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DIF Assessment of CAT Data: Kernel-Smoothed CATSIB
ABSTRACT

CATSIB is a DIF assessment methodology for Computerized adaptive test data.

Kernel smoothing is a technique for nonparametric estimation of item response functions.

- In this study an attempt has been made to develop a more efficient DIF procedure for

CAT data, KS-CATSIB, by combining CATSIB with kernel smoothing. A correction

for smoothing in boundaries is also implemented. It is hoped that such a methodology

could provide a more powerful DIF technique for small samples while enhancing the
interpretation of local DIF analyses.

A simulation study was conducted to investigate the DIF estimation bias of KS-
CATSIB in comparison to CATSIB with small samples. Sixteen DIF items varying in
difficulty and discrimination were considered for this purpose. A sample of 500 examinees
was used in the reference group and a sample of 250 examinees was used in the focal
group. Preliminary results showed that the correction for smoothing in boundaries, even
though effective in reducing the bias in estimation, the bias in estimation is still larger
for KS-CATSIB in comparison to CATSIB. Therefore, DIF estimates (3s) associated
with KS-CATSIB are statistically biased and would lead to high Type I error rates.
Further modifications of KS-CATSIB are necessary before the program is ready for full
implementation.



DIF Assessment of CAT Data: Kernel-Smoothed CATSIB

CATSIB (Nandakumar & Roussos, 1997; Roussos, 1996) is a DIF detection proce-
dure for assessing DIF of computerized adaptive test (CAT) items. It can be used for
DIF assessment at the pretest stage and continue with DIF monitoring at the operational
stage, using the combined pretest and operational data, if necessary. Kernel smoothing
is a technique for nonparametric estimation of an IRF (Ramsay, 1991). It is a computa-
tionally simple technique for estimating IRFs and does not impose any assumptions on
the data. However, merely estimating reference (R) and focal (F) group IRFs does not
result in a DIF hypothesis test. Hence by combining the two procedures it is hoped that
a more efficient DIF detection procedure can be obtained. Douglas, Stout, and DiBello
(1996) have combined the kernel-smoothing with SIBTEST to obtain a new DIF statis-
tic for detecting DIF of paper-and-pencil tests. They have shown that kernel-smoothed
SIBTEST has the advantage of efficient detection of local DIF and increased power for
the detection of differentially functioning items.

Pretest sample sizes for computerized adaptive tests, for a variety of reasons, tend to
be smaller than those for paper-and-pencil pretest items. Thus, it is important to develop
DIF detection procedures that have maximum detection power even for small samples.
Therefore, the purpose of this study is to develop an effective DIF detection procedure for
CAT data by combining two statistical methodologies: CATSIB and kernel-smoothing
item response function estimation. The resulting procedure will be referred to as KS-
CATSIB. In this paper the DIF estimation bias of KS-CATSIB in comparison to CATSIB
is studied for small sample sizes.

In what follows, CATSIB procedure will be first described followed by the Kernel-
smoothed IRFs, followed by KS-CATSIB. Following this, the simulation design and
results will be described.

CATSIB

Let 6 denote the proficiency of an examinee on the construct measured by the test.
An item is said to display DIF if the reference group test takers and the focal group
test takers, matched on proficiency level 8, do not have the same probability of correct
response on the item. Let DIF () be defined as the magnitude of DIF in a studied item
at proficiency level . A common way to model DIF as given in Shealy and Stout (1993)
is:

DIF(9) = Pr(8) — Pr(6), (1)
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where Pg(6) and Pr(6) denote item response functions of the studied item for the R
and F groups respectively at proficiency level §. DIF, denoted by 3, is defined as the
average of DIF(6) over § given as:

ﬂ=/DMWV@M, 2)

where f(0) is an appropriate density function on 6 such as that for the combined R and
F groups. Hence, the null hypothesis for DIF hypothesis testing is stated as

Ho:,@=0.

An important aspect of any DIF procedure is to select R and F test takers that are
matched on ability before comparing their performance on the studied item. An obvious
choice for this purpose is observed test scores or ability estimates. However, it is a well
known fact that some type of correction is necessary to observed estimates of ability
to avoid type I errors. This is because, it is often observed that there is a stochastic
ordering of ability distributions on the intended ability of R and F groups, with R group
mean higher than the F group mean. Therefore matching on the observed (estimated)
score could result in falsely detecting DIF in favor of the group with higher mean ability,
thus inflating the Type I error. Hence a correction is commonly adopted to correct for
this statistical bias.

CATSIB, following the tradition of SIBTEST (Shealy & Stout, 1993), employs a
“regression correction” to correct for ability differences in R and F groups. Instead of
matching examinees on estimated 6 (denoted by g), CATSIB matches examinees in R
and F groups on an estimate of expected true values of 8, for group g (R or F) as given
by (see Nandakumar and Roussos (in press) for details)

0* = E,[9]4). (3)

In order to compute an estimate of DIF (denoted by B), the observed range of real-
valued variable §* is divided into n equal intervals. Examinees are then classified into
one of the n intervals based on their values of §*. An estimate of DIF is then given by

B = Xn:[ﬁ’a,k ~ Pri)ir, (4)

k=1

where Isg,k is the observed proportion of group g test takers in ability interval k who got
the studied item right, and p is the observed proportion of R and F test takers who
were classified into interval k.



Because the number of intervals was arbitrary, an initial approach we took was
to have the computer program automatically determine the number of intervals. To
ensure stable statistical estimation, an interval was required to have a minimum of three
test takers from each of R and F for that interval to be included in the calculation of
3. All intervals with fewer than this minimum number were not used. Thus, it was
important to carefully choose the number of intervals. If too many intervals were to
be used, the intervals could become so sparsely populated with test takers that too
many intervals (and, thus, too many test takers) could be eliminated from the statistic
calculation resulting in a powerless statistic. On the other hand, if too few intervals
were to be used, the test statistic could become overly sensitive to impact and its Type
1 error could become unacceptably inflated. (In the extreme case of a single interval,
the statistic would reduce to being purely a measure of impact.) To strike a balance
between these two extremes, CATSIB was programmed to automatically start with an
arbitrarily large number of ability intervals (80) and to then monitor how many test
takers would be eliminated due to the throwing out of sparse cells. If more than 7.5%
of either the R or F test takers would be eliminated, CATSIB automatically decreases
the number of cells until the number of test takers eliminated from each group becomes
less than or equal to 7.5%. However, the minimum number of ability intervals was set
at 20, even if this meant that the number of test takers eliminated from one or both of
the groups sometimes exceeded 7.5%.

Subsequently, a systematic investigation into the number of intervals to be used
to obtain optimal estimates of DIF and hypothesis testing was conducted (Roussos,
Nandakumar, & Cwikla, 1999). Two scaling methods were used: normal and percentile,
to classify examinees into intervals based on 6*. The results revealed that DIF can
be estimated accurately with as few as 10 intervals with minimal bias in either the
estimation of DIF or the estimated standard error of the statistic. Percentile scale in
general provided accurate results with fewer number of intervals than the normal scaling.

The test statistic to test the null hypothesis of no DIF is given by

5 |
B = ——.
@ )

The standard error for ﬁ is estimated based on the observed variance of the studied item
responses in each ability interval:

Q

. n ~2 ] Y ~2 ] Y
k=1 NRk nek
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where Y denotes the response to the studied item, 62, (Y’) is the observed variance of ¥’
in ability interval & for group g, and ngy is the number of g group test takers in interval
k. The null hypothesis of no DIF is rejected at level « if the statistic B exceeds the
100(1 — o) percentile obtained from the standard normal table.

The estimate B serves as an index of the amount of DIF present in the item. For
example, it is possible that an item may exhibit statistically significant DIF but the
degree of DIF may not be practically meaningful in terms of how it affects the perfor-
mance of test takers in the two groups. Thus, B can be very useful in assessing the
degree of DIF practically. It can be seen from Equation 4 that ﬁ estimates the average
difference between R and F in percent chance of a correct response (conditional on 6*)
on the studied item.

Kernel — Smoothed Item Response Functions (7)

This section provides a brief overview of kernel-smoothing estimation of unknown
regression functions. Kernel-smoothing for estimation of item response functions was
first introduced by Ramsay (1991) and subsequently used for assessing DIF of paper-
and-pencil tests by Douglas, Stout, and DiBello (1996). It is a general technique for
estimating unknown nonparametric regression functions of E[Y|X = z]. In nonparamet-
ric estimation, no assumptions are made regarding the shape of the unknown regression
function such as linear or nonlinear.

Nadaraya (1964) and Watson (1964) proposed a method to estimate a nonparametric
regression function E[Y|X = z] as
n K(Z=2)Y,
fn (JI) = 1:11 T—T 8
K(=) )

i=1

Here n is the sample size and K is a weight function that is symmetric, nonnegative
and approaches zero as its argument becomes further from zero. The function K has
support on the interval [-1,1]. The user-specified constant b is a bandwidth parameter
which controls the amount of smoothing. It can be seen that f,(z) is a smoothly weighted
average of the Y;, where the weights are determined by the kernel function K(z) and the
bandwidth b. Also, the further z; is from z, the less weight is given to the corresponding
value Y; in the estimation of f,(z).

It has been shown that the accuracy of estimation of f,(z) is very sensitive to the
bandwidth b. If the bandwidth is very small, only points with ordinates very close to
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the = value where f,(z) is estimated are given much weight. Although, this weighted
averaging within a narrow window helps in controlling the local behavior of the regres-
sion function, it excludes data and as a result the estimate of the regression curve is not
smooth. A large bandwidth, on the other hand, includes more data, thereby compro-
mising the local behavior with a smoother regression curve. A way to compromise is to
choose a bandwidth that is a function of sample size. A rule of thumb for the bandwidth
is to set b = Cn~1/5, where C is chosen on the basis of past experience. Douglas, Stout,
and DiBello (1996) in their study chose C = 0.7, and K(z) =1 —2%for -1 <z < L.

Kernel-Smoothed CATSIB

KS-CATSIB is obtained by incorporating kernel-smooth estimates of IRFs in CAT-
SIB instead of using mutually exclusive cells corresponding to discrete ability intervals.
In this way, a more natural use of the matching criterion is utilized and avoids the
problem of sparse cells, minimum number of examinees per cell, etc. The regression
correction implemented in CATSIB is unaffected by the use of kernel smoothing and
thereby can still be used to control for the type I error rates. It is hoped that the use of
kernel-smoothed IRFs will enhance the assessment of local DIF and increas the power
with small samples.

Steps in implementing KS-CATSIB are described below. It is assumed here that
the items used for obtaining the ability estimates (in order to match examinees from the
reference and focal groups) are disjoint from the studied item(s).

Step 1. For each examinee obtain an estimate of ability (4;) by adaptively administering
pre calibrated items.

Step 2. Perform the regression correction on ability estimates (denoted by gr) for the
focal and reference group examinees separately.

Step 3. Divide the ability range (taken over both groups combined) into N equally
spaced design points.

Step 4. Compute the kernel-smoothed estimate of item response function for the stud-
ied item for group g at each of the design points according to

n 0-6:
-~ E1=91 K(m%)y;g

Pg (0k) = ng 9—9:
T K (5)

 k=1,...,N



where

Kiz)=1-12% -1<z<1

h(ng) = 0.7n~1/5 is the smoothing parameter or the band width,

ng is the sample size in group g, and

Y;, is the response to the studied item by the 7th examinee of group g.

Step 5. Estimate local DIF 3(6y) by

B(6) = Pr(6x) — Pr(6x)

Step 6. Estimate global DIF § by

~ ~

B = E[Pg(6) — Pr(6)]
as estimated by o A
YR (PR(6;) — Pr(8}))
nR+nNf

8=

Boundary modifications for kernel regression

Although the kernel window is symmetric in the middle of the ability range, it be-
comes asymmetric for evaluating points that are less than a bandwidth away from either
boundary. In this case, the kernel-smoothing estimation procedure must be adjusted.
Our initial corrections for boundary problem is made following Rice (1984) as follows.

e IF 6 < h(n,). That is, 8 is in the left boundary (below the band width).

Letp=h—(%5

The modified IRF is given by

P(6) = Py(8; h(ng)) + BIP,(8; h(ng)) — Fy(6; ah(ny))],

where
R Wi(u
ﬁ(p)= #(5)%%(’,,—)7 a=2_p7 and R(u)=w_:)%ﬂ%

Wo(u) = [ K(v) dv
Wi(u) = [ vK(v) dv = 5(1 - %)



o IF § > 1 — h(ny). That is, 8 is in the right boundary (above the band width).

Let p = Ay
The modified IRF is given by

~

13;(0) = 139(9; h(ng)) + 5[139(9; h(ng)) — ACK ah(ng))],

where

a=2—p, and R(u) = ¥

— __ R
Blp) = aR(Z)-R(p)’ ~ Wo(u)

J
J

e e o

Wo(u)
Wi(u)

The Simulation Study

To evaluate the performance of KS-CATSIB with CATSIB, a simulation study was
designed. Small sample sizes, typically occuring in pretest situations were considered.
Sample sizes of 500 and 250 were used for the reference group, while sample sizes of 500,
250, and 125 were used for the focal group.

Examinee abilities were generated from normal distributions. The R and F groups
had the same standard deviation of 1. However the means of the R and F distributions
differed by one standard deviation. That is, the impact level (dr = pg, — po,) Was set
to 1.0. Two different distributional situations were used with d = 1: pg = 0.5 and
pr = —0.5 when R and F were of the same size; and pg = 0.67 and pp = —0.33 when
R was twice the size of F.

In generating the item parameters of the item pool for the simulated operational
items, the goal was to generate parameters that closely resembled those estimated from
real data. To this end, the descriptive properties of the item parameter estimates from
over 700 operational LSAT items were observed. It was found that the item discrimina-
tion parameters generally ranged from .4 to 1.1 for low difficulty level items and from .4
to 1.7 for high difficulty items, and that the distributions were positively skewed. The
vast majority of the item difficulty parameters were observed to range between -3 and 3
and followed approximately the standard normal distribution. The simulated difficulty
level parameters were, thus, generated from the standard normal distribution. The simu-
lated discrimination parameters were generated from one of two lognormal distributions,
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depending on the difficulty level of the item. The simulated lower asymptote parameters
were independently generated from a uniform distribution with a range between .12 and
.22 to approximate those from the actual LSAT data. The precise distributions used for
the item parameters are described below.

log(a) ~ normal (—.357,.25) for b < —1 with range .4 <a < 1.1
log(a) ~ normal (—.223,.34) for b > —1 with range .4 <a < 1.7
b~ N(0,1) with range —3 <b6<3
¢~ U(.12,.22)

DIF was introduced in the studied items through differences in the difficulty param-
eters between R and F using the following model for DIF:

DIF = § = [[Pa(6) - Pr(6)l£(6)ds, (9)

h
where l—¢

1 + ezp[—1.7a(6 — be)]

P,(0) =c+ ,9g=Ror F (10)

Sixteen different DIF items were considered. They varied in the amount of latent
DIF (B) in each item and in the difficulty and discrimination parameters. Three DIF
levels were considered: 0, .05 and .1. An item with 3 value of 0 indicates the null case of
no DIF. An item with a 3 value of 0.050 indicates the lowest value of medium DIF, and
an item with a 3 value of 0.100 indicates the lowest value of high DIF. There were 6 no
DIF items (8 = 0); 5 medium DIF items (8 = 0.050); and 5 high DIF items (8 = 0.100).
Within each category of DIF, items varied in difficulty and discrimination: medium
discrimination (.8) and medium difficulty (0); low discrimination (.4) and low difficulty
(-1.5); low discrimination (.4) and high difficulty (1.5); moderate discrimination (1.0)
and low difficulty (-1.5); and high discrimination (1.4) and high difficulty (1.5). One
more extreme item was included for 8 = 0 case, high discrimination (1.4) and low
difficulty (-1.5). This item was included only in the null DIF case because previous
studies had shown that high discriminating and easy items have a tendency for impact-
induced Type I error inflation (Roussos & Stout, 1996; Allen & Donoghue, 1996). These
items are listed in Table 1. Items 1 to 6, in Table 1, are easy and low discriminating,
items 7 to 9 are of average difficulty and discrimination, and items 10 to 15 have high
difficulty and high discrimination. Item 16 is the rare item that is very easy and has
high discrimination.

10
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For each examinee, item responses to DIF items were computed using the three-
parameter logistic function given by,

P l1-c¢

o(0) = et e ta =gy ¢ T (11)

where a and b denote the discrimination index and difficulty index, respectively, of the
DIF item under investigation. The guessing level ¢ was set to .17, which is the average of
all estimated ¢ parameters of the LSAT item bank; and 6 is the true (generated) ability
level of the examinee.

Each simulated examinee was adaptively administered 25 operational items (a value
typical of operational CATs), and linearly administered all 16 DIF items. An estimate of
ability was obtained from the examinee responses to the operational items. The ability
estimates of test takers were determined using a standard maximum-information CAT
design described as follows.

The ability scale from -2.25 to 2.25 was divided into 37 equal intervals in increments
of 0.125. For each item ¢, item information, I;(#), was computed at the § values corre-
sponding to the midpoints of the 37 intervals using the following formula (Hambleton,
Swaminathan, & Rogers, 1991, p. 91):

~ (1.7a;)%(1 — ¢;)
10) = o eap(L7ai(0 — b)) + eop(—L7a(@ — B))P

where a;, b;, and ¢; denote discrimination, difficulty, and lower asymptote parameters of
item 7 respectively. At each 6 level the pool of operational items was sorted according to
the item information values from lowest to highest and saved in a separate table. This
table was used during the simulations to select items with the highest information at a
given 6-level.

To prevent items from becoming overexposed, an exposure control method was
incorporated (Kingsbury & Zara, 1989). Accordingly, the first item to be administered to
a simulated test taker was randomly selected from the 10 items with highest information
values at 6 = 0 (the starting value for all simulated test takers). The second item was
randomly selected from the 9 best items at the new estimate of §. The third item
was randomly selected from the 8 best items, and so on until, beginning with the 10th
item, the item with the highest information was selected (unless, of course, the item had
already been administered to that simulated test taker, in which case the next best item
was selected).
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After administering each item in this manner to each test taker, the simulated test
taker’s response (right/wrong) was determined, and the simulated test taker’s estimated
ability, 0 was updated using Owen’s Bayesian sequential scoring (Owen, 1969). After
all 25 items were administered, a Bayesian modal score was calculated and was used as
the final ability estimate ().

After applying the CATSIB regression correction to the ability estimates (denoted
by g?), kernel-smoothed IRFs were obtained for each DIF item and the DIF estimate
(ﬂ) was computed for CATSIB and KS-CATSIB. This process was repeated 100 to 400

times for each DIF item and the average DIF estimate (B) was computed over 100 (or
400) trials. These results were compared with true DIF () values. The results for all
16 DIF items are tabulated in Tables 2 and 3.

RESULTS

Tables 2 and 3 summarize preliminary results with sample sizes of 500 for the ref-
erence group and 250 for the focal group.

Table 2 compares results of KS-CATSIB with and without the Rice correction for

the boundaries. The body of the table provides average DIF estimates (B) over 100
trials along with the standard errors in the parentheses. The general pattern of results

show that there is a slight overestimation of DIF by both procedures, and Bs with the
Rice correction are closer to the true values of DIF than (s without the Rice correction

(constant bandwidth). The average bias (3~ () for KS-CATSIB with the Rice correction
was -.0104, and the average bias without the Rice correction was -.0136. Similarly, the
standard deviation in bias with Rice correction was lower (.0108) than without the Rice
correction (.0120). Therefore, generally, the Rice correction for boundaries appears to be
effective in reducing the statistical bias in kernel-smoothing estimation at the boundaries.
In few instances where the bias was more with rice correction happens to be for high
difficult or high difficult and high discrimination items. That is, for very difficult and/or
discrimination items, adjusting the bandwidth at the boundaries is causing more harm.
It appears that for such items, extreme sparseness of examinees at one of the boundaries
is further inflating the bias with Rice correction. Further research is needed to examine
the Rice correction and also to identify other boundary corrections that work for all
types of items.

Table 3 compares DIF estimates (Es ) for KS-CATSIB and CATSIB for 100 trials

12
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and 400 trials. As expected, DIF estimates (E) with 400 trials are slightly closure to true
values of 3, than those with 100 trials. In all cases, DIF estimates of CATSIB are closer

to true values than those with KS-CATSIB. That is, the bias in DIF estimation (3 — B)
is higher for KS-CATSIB. This is further augmented for high difficult and discrimination
items. For the case of 400 trials, the average bias over 16 items for CATSIB was —.0045,
while the average bias for KS-CATSIB was —.0164. The standard errors of bias for

CATSIB was also lower (.0108), than KS-CATSIB (.0120). Therefore, Bs associated
with KS-CATSIB are statistically biased and would lead to high Type I error rates.
Further modifications of KS-CATSIB are necessary before the program is ready for full
implementation.

Conclusion

In this study an attempt has been made to develop a more efficient DIF procedure
for CAT data by combining CATSIB with kernel smoothing. It is hoped that such
a methodology could provide a more poweful DIF technique for small samples while
enhancing the interpretation of local DIF analyses. Preliminary analyses show that, the
boundary correction implemented in KS-CATSIB, while useful in obtaining a less biased
DIF estimate, it is not faring any better than CATSIB. Further examination of kernel
smoothing adjustment for boundaries is imminent before it can be recommended.

Few corrections for improving the estiamtion in boundaries were considered. The
first correction was not to estimate design points within a bandwidth distance of either
boundary. This resulted in too many examinees not being used in the DIF estimation.
To overcome this problem, the bandwidth was narrowed until it was small enough that
at least 97.5% of either group examinees were included in the DIF estimation. The
third modification made was to use the standard recommended bandwidth for as much
of the ability range as possible, until the bandwidth bumped against the boundary.
Then the bandwidth was allowed to shrink as necessary as it approached the boundary
until at least 97.5% of either group was included in the DIF estimation. The last two
modifications also did not produce satisfactory results. Habing (1999) evaluated Rice
correction with a different boundary kernel due to Mueller (1991) that seems to be a
promising. This is another method we will be evaluating in a future study. Subsequent
to obtaining optimal smoothing corrections for boundaries, future studies will investigate
Type I error rates and the degree to which kernel smoothing can increase the power of
CATSIB for small sample sizes.

Because equity concerns have been especially of concern with computerized tests, it
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is important that testing companies not allow their DIF assessment power to fall victim
to the small sample sizes that CATs typically impose. First and foremost, the most
powerful DIF detection possible should be implemented at the pretest stage. Secondly,
the operational items should be continually monitored for DIF, using both the pretest
and operational data in order to obtain maximum detection power. We hope that KS-
CATSIB will be potentially a valuable tool in meeting these objectives.
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Table ‘ — Item Parameter of DIF Items

Item

1

O 00 N O v b W N

— et et et b e
WV W N = O

16

1

O 00 0 N U s W

— et b et e et
w» Hh W N = O

B 2  ba b
Equal Sizes for Reference and Focal Groups
.00 4 -1.50 -1.50
.05 4 -1.74 -1.26
.10 4 -1.98 -1.02
0 4 1.50 1.50
.05 4 1.26 1.74
.10 4 1.02 1.98
.00 .8 0.00 0.00
.05 .8 -0.13 0.13
.10 8 025 025
.00 1.0 -1.50 -1.50
.05 1.0 -1.69 -1.31
.10 1.0 -1.88 -1.12
.00 1.4 1.50 1.50
.05 1.4 1.31 1.69
.10 14 1.12 1.99
.00 1.4 -1.50 -1.50
Reference Group Twice Size of Focal Group
.00 4 -1.5 -1.5
.05 4 -1.66 -1.19
.10 4 -1.81 -0.88
.00 4 1.50 1.50
.05 4 1.34 1.83
.10 4 1.17 2.17
.00 .8 0.00 0.00
.05 8 -0.08 0.17
.10 .8 -0.17 0.34
.00 1.0 -1.50 -1.50
.05 1.0 -1.62 -1.26
.10 1.0 -1.74 -1.03
.00 1.4 1.50 1.50
.05 1.4 1.37 1.77
.10 1.4 1.22 2.07
.00 1.4 -1.50 -1.50

—
=)}

18



Table 2: Comparison of average DIF estimates for
KS-CATSIB With and Without Rice Correction

(100 trials)
KS-CATSIB | KS-CATSIB

item # True beta (no Rice) (Rice)

0.006 0.0043

1 0.00 (.0392) | (.0400)
0.0614 0.0571

2 0.05 (.0486) | (.0500)

0.1119 0.1066

3 0.10 (.0446) | (.0478)

0.0087 0.0073

4 0.00 (.094) | (.0521)

0.0544 0.0545

5 0.05 (.0521) | (.0543)

0.1057 0.1080

6 0.10 (.0454) | (.0492)

0.0076 0.0014

7 0.00 (.0532) | (.0530)

0.0515 0.0433

8 0.05 (.0468) | (.0469)

0.0979 0.0889

9 0.10 (.0448) | (.0459)
0.0138 .0094

10 0.00 (.0338) | (.0330)
0.0662 .0601

11 0.05 (.0351) | (.0341)
0.1231 1131

12 0.10 (.0381) | (.0348)
0.0245 .0284

13 0.00 (.0449) | (.0494)
0.082 .0955

14 0.05 (.0392) | (.0438)
0.1301 .1184

15 0.10 (.0450) | (.0460)
0.0229 .0196

16 0.00 (.0274) | (.0276)
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Table 3: Comparison of average DIF estimates for
KS-CATSIB and CATSIB

100 trials 400 trials

item # | True beta KS-CATSIB CATSIB KS-CATSIB CATSIB
0.006 0.0029 0.0073 0.0026
1 0.00 (.0392) (.0351) | (.0411) | (.0371)
0.0614 0.0546 0.0606 0.0543
2 0.05 (.0486) (.0443) (.0446) (.0419)
0.1119 0.1048 0.1127 0.1069
3 0.10 (.0446) (.0401) | (.0429) (.0395)
0.0087 0.002 0.0116 0.0024
4 0.00 (.094) (0.0468) | (.0473) | (.0457)
0.0544 0.0433 0.0575 0.0502
5 0.05 (.0521) (.0514) | (.0498) | (.0475)
0.1057 0.097 0.1119 0.1051
6 0.10 (.0454) (.0417) | (0482) | (.0458)
0.0076 0.0011 0.0136 0.0056
7 0.00 (.0532) (.0463) | (.0486) | (.0423)
0.0515 0.0481 0.0608 0.0572
8 0.05 (.0468) | (.0417) | (0466) | (.0434)
0.0979 0.0989 0.1085 0.1092
9 0.10 (.0448) (.0370) | (.0480) | (.0435)
0.0138 0.004 0.0166 0.0067
10 0.00 (.0338) (.0268) (.0342) (.0275)
0.0662 0.0565 0.0682 0.0561
11 0.05 (.0351) (0262) | (.0350) | (.0275)
0.1231 0.1131 0.1236 0.1104
12 0.10 (.0381) (.0295) | (0387) | (.0298)
0.0245 0.0037 0.0261 0.0007
13 0.00 (.0449) (.0404) (.0434) (.0396)

: 0.082 0.0459 0.0805 0.051
14 0.05 (.0392) (0384) | (.0435) | (0412)
0.1301 0.0896 0.1318 0.0968
15 0.10 (.0450) (.0376) (.0457) (.0409)
0.0229 0.0088 0.0213 0.0075
16 0.00 (.0274) (.0216) (.0279) (.0215)
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